Санкт-Петербург,
ул. Магнитогорская д.30 оф.416
Пн–Пт с 10:00 до 19:00
Корзина пуста
1 Оборудование для
автосервиса
2 Оборудование для
автосервиса
3 Оборудование для
автосервиса
Валюта магазина

CAN шина. Часть 3.

Главная > Новости > CAN шина. Часть 3.

04.02.2014


OBD-II, автосканер и тюнинг
Большинство владельцев не требуют от автомобиля более чем надежной и экономичной эксплуатации, но некоторые ожидают от OBD-II какие либо расширенные возможности. Ранние бортовые компьютерные системы управления автомобилем использовали микросхемы, которые возможно было заменить или изменить параметры для извлечения большей мощности и передвижения с более высокой скоростью.OBD-II системы не предоставляют возможность замены микросхемы, но возможно перепрограммирование микросхемы т.н. чип тюнинг. Таким образом, изменяются параметры системы OBD-II. В настоящее время количество моделей автомобилей допускающих такую возможность ограничено, но в будущем будет расширено. При проведении подобных мероприятий следует соблюдать параметры соответствия требованиям EPA стандартов.


4. Компьютерная диагностика автомобиля
Период с 1985-го по 1995 год —  время интенсивной компьютеризации автомобилей, когда появление большого количества электронных систем контроля и управления обусловило необходимость усовершенствования технологии производства автомобилей.
Поколение автомобилей XXI века будет настолько сильно отличаться от современного, что потребует принципиального изменения не только технологии производства, но и собственно управления транспортным средством. Одно из основных направлений развития – автоматизация управления автомобилем. Автомобильный компьютер сам будет с точностью до миллисекунды решать, когда требуется произвести переключение передач, и всегда сделает это абсолютно верно, сэкономив максимум горючего и не потеряв ни секунды при разгоне.
При этом оборудованный компьютером автомобиль сможет общаться с водителем на английском, немецком, русском и других языках — по желанию владельца.


Чтобы обучить компьютер правильно выполнять столь сложные операции, требуется решить несколько сложных аппаратных и программных задач. И только время покажет, осуществится ли все задуманное.
Такой суперкомпьютер должен будет обладать определенной моделью окружающей обстановки, в которой он будет способен ориентироваться самостоятельно, без помощи оператора, и которую, на основании накопленного опыта, он сможет расширять и совершенствовать. По своим возможностям такой суперкомпьютер должен быть значительно ближе к человеку. Он должен обладать зрением и слухом, чтобы различать и классифицировать оптические образы и звуки, должен понимать команды, подаваемые ему голосом, а главное — уметь разобраться в этих командах и даже запрашивать дополнительную информацию в том случае, если они сформулированы не корректно или не полностью.
Пока же автомобильные компьютеры достаточно примитивны и для «общения» с ними необходима высокая инженерная квалификация.


Современные электронные системы, предназначенные для управления узлами и агрегатами автомобиля, оснащенными системами самодиагностики, которые информируют водителя о появлении некоторых неисправностей. Так, например, на приборном щитке многих автомобилей имеется многофункциональный индикатор — световой индикатор наличия неисправности Check Engine (на некоторых моделях специальные светодиоды, расположенные непосредственно на устройствах управления), которая обычно включается при включении зажигания и гаснет через некоторое время после запуска двигателя. Если же при самодиагностике обнаружатся неисправности компонентов, подлежащих диагностике, то индикатор не погаснет. В случае возникновения некоторых неисправностей во время движения индикатор также загорается, а при однократной незначительной неисправности он может  погаснуть (сохранив ошибку в памяти для последующего считывания), но если он продолжает гореть, то не удастся избежать немедленной остановки, более глубокой диагностики и ремонта.


Специалисты сервиса должны не только считывать и правильно интерпретировать коды, но желательно, проводить полную диагностику состояния всего автомобиля, проверять компрессию в цилиндрах, давление в топливной системе, опережение зажигания, состояние свечей и свечных проводов, герметичность и соответствие вакуумной системы, содержание СО в выхлопе, состояние топливного фильтра, приводных ремней, катализатора, датчиков температуры и т.д. Наличие специализированного диагностического компьютера, конечно, не помешает, но основой всего должно быть понимание принципов работы системы и назначения всех ее узлов, без которого невозможно получить объективную информацию о текущем состоянии двигателя и топливной системы, чтобы уверенно и целенаправленно произвести последующий ремонт.


Системы диагностики на разных автомобилях могут различаться, но принцип действия всех систем идентичен: блоком управления считываются показания датчиков на разных режимах работы в процессе эксплуатации автомобиля (запуск, прогрев, холостой ход, разгон и торможение и т.д.). Показания датчиков бывают статическими (дискретными) или динамическими (изменяющимися во времени). Статические показания датчиков обычно определяются неким пороговым значением — импульсом определенного уровня или «переключателем» (то есть наличием или отсутствием сигнала), а динамические, как правило, передают изменения параметра и проверяются на допустимые диапазоны (верхний и/или нижний пределы). Все диагностические системы хранят и отображают статические данные — «коды ошибок» и динамические характеристики.
На дискретные показания датчиков система самодиагностики реагирует обычно только при отсутствии электрического контакта (возвращает сигнал о неисправности датчика), а изменение динамических показателей отслеживается по таблицам, хранящимся в памяти устройства управления. Впрочем, один и тот же датчик может проверяться как на электрический контакт, так и на допустимые пределы изменения. И тогда для одного устройства могут быть две ошибки: либо отсутствие сигнала, либо выход за предельные параметры.


Устройство управления может состоять из нескольких блоков: отдельно для двигателя  — ECU (Engine Control Unit) или ECM (Engine Control Module), отдельно для антиблокировочной системы тормозов — ABS, отдельно для подушек безопасности — SRS (Air Bag Supplemental Restraint System), для автоматической коробки передач — A/T (Electronic Automatic Transaxles) и т.д. Но при получении сигнала об ошибке современная система диагностики обязана ответить унифицированно:
• классифицировать неисправность по номеру (коду ошибки) и запомнить этот код в долговременной памяти;
• предпринять корректирующие действия, предусмотренные на этот случай управляющей программой.
После этого сохраненные в памяти коды ошибок считываются специальным прибором (сканером) или вручную, при помощи определенной процедуры, которая вводит электронный блок управления в режим индикации кодов самодиагностики. После их изучения и анализа дополнительных данных принимается решение о последующих мероприятиях.


Однако следует отметить, что часть параметров, определяющих состояние двигателя, остается вне зоны контроля. И даже после считывания кодов важно не только их идентифицировать, но и определить первопричину возникновения неисправности.
Необходимо помнить, что автомобиль — это набор сложных устройств и агрегатов, и что его состояние зависит от большого количества параметров. Таким образом, даже незначительная на первый взгляд неисправность может вызвать целую комбинацию кодов, но в то же время ни один из них не даст ответа на вопрос о том, что же в действительности неисправно. Следовательно, для установления точного диагноза требуется инженерная квалификация, а также наличие довольно длительного периода времени. После чтения кода ошибки нужно выполнить дополнительные проверочные операции для того, чтобы убедиться в правильной интерпретации кода. Так, например, очень часто коды неисправностей возникают из-за того, что после тех или иных ремонтных операций на автомобиле просто забывают подсоединить разъем или из-за повреждения электропроводки.


Стандарты в автомобильной диагностике
До 1994 года в мировой автомобильной промышленности применялись различные системы, стандарты и протоколы для диагностики, которые называются системами семейства OBD-I (On Board Diagnostic). Процедура считывания кодов систем OBD-I напоминала азбуку Морзе: короткие импульсы (длительностью 0,2 с) обозначали единицы, а длинные (1,2 с) — десятки. Паузы между импульсами внутри одного кода составляли приблизительно 0,3 с, а сами коды (если их несколько) разделялись длинными паузами в 1,8-2 с. Коды диагностики OBD-I были двузначными (их также называют «короткими» — в отличие от «длинных» пятизначных кодов расширенной диагностики более поздних систем).
К 1995 году начали появляться так называемые расширенные системы, которые долгое время сосуществовали с прежними, но уже с 1996 года по требованиям Агентства по защите окружающей среды США (US Environmental Protection Agency, U.S. EPA http://www.epa.gov/oms/obd.htm) и благодаря усилиям Ассоциации инженеров автомобилестроения (Society of Automotive Engineers, SAE http://www.sae.org/) были повсеместно введены единые стандарты самодиагностики, протоколов обмена данными, унифицированы требования к диагностическим средствам и структуре кодов. Таким образом, начиная с этого времени все автомобили и грузовики малой грузоподъемности, произведенные для продажи в Соединенных Штатах Америки, оборудуются единой системой самодиагностики OВD-II, а с 2000 года, согласно директиве 98/69EG, все новые автомобили с бензиновыми двигателями и в Европе диагностируются только по этому стандарту. Постепенно на данную систему переходят и автомобильные производители других регионов мира. Признаком этой системы является обязательное наличие в салоне автомобиля характерного 16-контактного диагностического разъема. К сожалению, современные системы, несмотря на всеобщую стандартизацию, продолжают использовать различные протоколы для связи с модулем управления. OBD-II-совместимый автомобиль может использовать любой из следующих протоколов: J1850 VPW, J1850 PWM, ISO 9141-2, ISO 14230-4 и Keyword Protocol (KWP) 2000. Во всех протоколах применяется импульсно-кодовая модуляция переменной или постоянной длины на основе CAN-bus (дополнительная информация http://www.obdii.com).
Однако если для получения диагностических данных в прежней системе применялись только специальные дилерские сканеры (или неудобная процедура активизации модуля, уникальная для каждой марки), то OBD-II совместимый автомобиль может тестироваться универсальным OBD-II сканером или прибором.


Назначение всех диагностических систем — унифицированное определение неисправностей в различных узлах и агрегатах автомобиля для принятия решения о последующем ремонте. Но если в системах семейства OBD-I было предусмотрено определение неисправностей ограниченного спектра (двигателя, подушек безопасности, тормозной системы ABS и автоматической коробки передач), то в OBD-II перечень диагностируемых узлов расширен, были добавлены так же климатическая установка, иммобилайзер и различное дополнительное оборудование. Кроме того, значительно увеличилось количество диагностических кодов, теперь более 3000. Для диагностики даже такого «механического» устройства, как термостат, на современных автомобилях так же используются соответствующие алгоритмы и коды ошибок.
Усложнение систем и насыщенность электроникой, в свою очередь, привели к усложнению собственно методов диагностики неисправностей, а требования к техническому персоналу и к качеству применяемого диагностического оборудования значительно возросли.


Методика проведения компьютерной диагностики
Очевидно, что грамотная диагностика и поиск неисправности занимают подчас значительно больше времени, чем устранение неисправности.
В идеальном  варианте диагностика должна состоять из следующих этапов:
• На первом используются все доступные средства компьютерной диагностики и считываются не только коды ошибок, но и все цифровые данные, прямо или косвенно относящиеся к возникшей проблеме. Здесь надо понимать, что «говорит» сканер и насколько полно он интерпретирует найденные неисправности.
• На втором этапе все эти данные должны быть дополнительно подвергнуты электрической (аналоговой) проверке. И в первую очередь необходимо тщательно проверить электрическую систему автомобиля (аккумулятор, генератор, провода и контакты), чтобы убедиться в ее полной исправности. В противном случае полученная цифровая информация сомнительна или недостоверна.
• Далее необходимо, чтобы сканер или софт установил коммуникацию с проверяемым контроллером, то есть разрешил просмотр данных в режиме реального времени (эта функция обычно называется Data Stream — отображение потока данных). Данная функция может использоваться для проверки сигналов датчиков и других элементов систем управления в режиме реального времени. Таким образом, на дисплей сканера выводятся сигналы датчиков автомобиля и параметры системы впрыска топлива в течение некоторого времени в режимах холостого хода, а также увеличения и сброса скорости вращения вала двигателя. После этого проводится анализ полученных результатов, и делаются выводы о правильности работы системы, наличии и характере неисправностей. Одним из основных преимуществ того или иного сканера в этом случае является возможность работы в режиме многоканального осциллографа, то есть получения графиков зависимости параметров не только от времени, но и от других параметров, а также исследование влияния изменения определенного параметра на тот, что выбран для анализа. И еще больше облегчает обнаружение причин неисправностей возможность сравнения осциллограмм, полученных при тестировании, со стандартными осциллограммами для подобных автомобилей. Правда, здесь вам потребуются инженерные знания и общее понимание процессов, происходящих в автомобиле. Если же поэтапной методики тестирования и вспомогательной информации по устранению конкретной неисправности, подобной дилерской сервисной инструкции, у вас нет, то лучше обратиться к специалисту.


В завершение, следует удалить из памяти контроллера коды ошибок и провести повторную инициализацию системы. При первой активации системы после стирания памяти контроллера управления, такое может произойти так же и после отключения аккумулятора в процессе ремонта либо замены каких-либо узлов или деталей, потребуется процедура повторной инициализации («переобучение» компьютера). Большинство автомобильных компьютеров и управляющих устройств запоминают и хранят данные о функционировании систем автомобиля для оптимизации эксплуатационных характеристик и улучшения работоспособности. После обнуления памяти устройство управления будет использовать значения, заданные по умолчанию, до тех пор, пока не будет записана новая информация о каждом компоненте системы. В течение нескольких рабочих циклов компьютер восстанавливает оптимальные значения и запоминает их снова, устройство управления может запоминать данные о 40 или более параметрах автомобиля. В ходе стадии переобучения может наблюдаться некоторое ухудшение «поведения» автомобиля: могут возникнуть резкое или нечеткое переключение передач, низкие или нестабильные обороты холостого хода,  могут появиться даже перебои в двигателе, связанные с обогащением или, напротив, с обеднением горючей смеси, а так же, как следствие, возрастет расход топлива. Однако эти симптомы должны быстро исчезнуть после запоминания компьютером ряда циклов вождения (то есть примерно через 30-40 км).
С помощью подобных диагностических систем, возможно эффективно сузить область поиска неисправности или неисправностей и определить характер неисправности, не прибегая к излишним, а зачастую и очень трудоемким операциям. Кроме того, при проведении регулярной плановой диагностики, результаты которой фиксируются и запоминаются, можно прогнозировать возможные неисправности, которые еще не возникли и не обратились в критическую фазу. Нет необходимости проводить диагностику исправно работающего двигателя или, в целом, автомобиля, если только диагностика не будет столь доступной, как компьютерная.


Диагностическое оборудование для автосервиса - приборы и сканеры
В качестве устройств для компьютерной диагностики применяются:
• Стационарные мотор-тестеры — многофункциональные устройства всесторонней автомобильной диагностики, в которых OBD-II-сканер присутствует как малая часть универсальной системы газоанализатора, измерения компрессии, давления топлива, разряжения во впускном коллекторе и многого другого. Естественно, стоят такие системы десятки тысяч долларов, так что диагностика с их помощью — дорогостоящее мероприятие.


• Специализированные дилерские сканеры (или так называемые универсальные дилерские приборы) — многофункциональные цифровые устройства, представляющие собой комбинацию мультиметра, осциллографа и микрокомпьютера со специализированной базой на сменном картридже для конкретной модели автомобиля. Стоимость таких устройств — порядка 2000-3000 долл. без картриджа и кабелей-переходников под различные модели автомобилей (картриджи сами по себе стоят порядка 500 долл. и к тому же имеют узкую специализацию по марке, модели и модификации того или иного автомобиля).


• Компьютерные тестовые системы, которые представляют собой обычный персональный компьютер, ноутбук или карманный компьютер произвольной конфигурации с соответствующим программным обеспечением и специальным кабелем OBD-II — RS-232. В таком соединительном кабеле стоит программируемый микроконтроллер c зашитыми протоколами обмена, так что напрямую соединить систему OBD-II с компьютером вам не удастся. Стоимость программного обеспечения вместе с кабелем для последовательного порта — порядка 500-1000 долл.
Компьютерная тестовая система является самой гибкой из всех перечисленных. Она позволяет считывать коды OBD-II и потоки данных в реальном времени и представлять их в интуитивно понятном формате,  в численной форме, в виде описания возможных неисправностей, в виде таблиц, а также в графическом виде, в том числе в форме мультипараметрических графиков. При помощи такой системы можно проводить и виртуальные тесты: изменять вручную один из параметров и смотреть, что будет происходить с остальными.
При этом в реальном времени ведется протокол, необходимый для детального анализа переходных процессов. Такие протоколы удобно сохранять в log-файлах по датам, что может пригодиться для ведения плановой диагностики: можно постепенно накапливать «историю мотора» и своевременно выявлять вероятные проблемы. Все данные можно распечатать в удобной для чтения форме, сохранить в формате MS Excel и оставить резервную копию на внешнем носителе.


Поскольку для полной и всесторонней диагностики автомобиля требуется исследование различных параметров в рабочих режимах, то есть в движении. Наиболее удобными являются системы на базе миниатюрных карманных компьютеров. Кроме того, такие устройства можно будет использовать и как бортовые компьютеры для учета расхода топлива, определения времени разгона, измерения мощности автомобиля и т.д. При этом системы на базе карманных компьютеров обойдутся  значительно дешевле.


Кроме специального оборудования поставляемого производителями автомобилей для собственных сервисных центров существует много программ для компьютерной диагностики автомобиля для настольного компьютера или ноутбука. Как правило, все они продаются вместе с соответствующими адаптерами. Есть среди них и отечественные разработки. ODB-II-адаптер с программным обеспечением, кабелем для подсоединения к OBD-разъему автомобиля и кабелем для COM-порта карманного компьютера возможно приобрести приблизительно  за 7000 руб. (стоимость кабеля для последовательного порта КПК приблизительно 700 руб.), а самый доступный  Palm стоит около 100 долл.


Многие обновления ПО и базы по различным автомобилям можно скачать через Интернет, что проверено и подтверждено на практике: ПО регулярно обновляется. Некоторые продукты универсальны для применения к различным моделям автомобилей и поддерживает многие автомобили, сделанные для Америки и выпущенные с 1996 года, все европейские автомобили с 2000 года и многие автомобили для азиатских рынков.
Такой индивидуальный сканер (работающий еще и как бортовой или маршрутный компьютер) очень полезен. Даже если не удается самому установить причину неисправности, то можно сохранить протокол работы автомобиля в формате Microsoft Excel (поток данных передается со скоростью примерно 500 Кбайт/ч) и обратиться с этим файлом в сервис-центр к специалистам. Сканер позволяет владельцу автомобиля самостоятельно и при минимуме обучения проверять эксплуатационные режимы своего транспортного средства, считывать коды неисправностей и определять состояние датчиков и исполнительных устройств.


Обойдется подобный диагностический инструмент заведомо дешевле, чем ремонт и долговременные простои  в автосервисах. С его помощью возможно сэкономить значительные средства, подтверждая диагностическую информацию, полученную от технического персонала сервиса, или даже проверять и устранять мелкие неисправности самостоятельно. Автомобили 1996-2003 года выпуска — это уже не примитивные системы,  количество кодов диагностики для автомобилей с OBD-II стандартом составляет несколько тысяч.
Получение владельцем автомобиля текущей информации о состоянии датчиков, исполнительных устройств и других компонентов автомобиля поможет ему также определять состояние и износ узлов, чтобы своевременно произвести их замену или ремонт. Это предоставляет возможность предупредить поломку, избежать дорогостоящего ремонта. А при фатальных неисправностях в пути подобные диагностические системы позволят оперативно определиться с их характером и принять решение: справиться с неисправностью собственными силами либо, не тратя напрасно время и средcтва, обратиться к специалистам.



← все новости

Полный путь к сайту: /home/stool/domains/s-tool.ru/public_html/